An Investigation of Pulsatile Blood Flow in a Bifurcation Artery Using a Grid-free Method

نویسندگان

  • Matthew SINNOTT
  • Paul W. CLEARY
  • Mahesh PRAKASH
چکیده

CFD modelling is a powerful, but largely under-utilised tool for biomedical applications. In particular, it has great potential for helping us better understand the mechanisms responsible for cardiovascular disease such as artherosclerosis and thrombi formation. Flow behaviour in blood vessels has been shown to depend strongly on features of the local geometry such as branching, bending, and regions of flow constriction. The simplest blood flow models only consider steady flow. However within the circulatory system, the periodic nature of the cardiac cycle induces a pulsatile, unsteady flow. This periodic pressure perturbation is expected to have significant implications for localised flow velocities and stress distributions. We propose here a pulsatile flow model using a grid-free method, Smoothed Particle Hydrodynamics. This method is well suited to transient flows within geometries of complex shape. The arterial geometry used here is a real carotid bifurcation derived from MRI. Rigid walls and Newtonian flow are assumed. In this paper we compare pulsatile and steady flow for this geometry.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An implicit finite difference scheme for analyzing the effect of body acceleration on pulsatile blood flow through a stenosed artery

With an aim to investigate the effect of externally imposed body acceleration on two dimensional,pulsatile blood flow through a stenosed artery is under consideration in this article. The blood flow has been assumed to be non-linear, incompressible and fully developed. The artery is assumed to be an elastic cylindrical tube and the geometry of the stenosis considered as time dependent, and a co...

متن کامل

Effect of six non-Newtonian viscosity models on hemodynamic parameters of pulsatile blood flow in stenosed artery

A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with non-Newtonian models using ADINA. Blood flow was considered laminar, and the arterial wall was considered rigid. Studied stenosis severities were 30, 50, and 70% of the cross-section...

متن کامل

An advection-diffusion multi-layer porous model for stent drug delivery in coronary arteries

Arterial drug concentration distribution determines local toxicity. The safety issues dealt with Drug-Eluting Stents (DESs) reveal the needs for investigation about the effective factors contributing to fluctuations in arterial drug uptake. The current study focused on the importance of hypertension as an important and controversial risk factor among researchers on the efficacy of Heparin-Eluti...

متن کامل

Numerical Investigation of Angulation Effects in Stenosed Renal Arteries

Background: Numerical study of angulation effects of renal arteries on blood flow has been of great interest for many researchers.Objective: This paper aims at numerically determining the angulation effects of stenosed renal arteries on blood flow velocity and renal mass flow.Method: An anatomically realistic model of abdominal aorta and renal arteries is reconstructed from CT-scan images and u...

متن کامل

I-46: Obstetrical Doppler

Accurate assessment of gestational age, fetal growth, and the detection of fetal and placental abnormalities are major benefits of sonography. Color Doppler can be used to assist in the identification of vascular architecture, detection of vascular pathology and visualization of blood flow changes associated with physiologic processes and disease states. The clinical applications of obstetrical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006